Vessel Traffic Trends in the Arctic and Overlap with Important Marine Mammal Areas

William D. Halliday

Associate Conservation Scientist

Wildlife Conservation Society Canada

Rationale

- Vessel traffic is increasing in the Arctic, which will likely lead to increased underwater noise and its associated impacts on marine life
- PAME's underwater noise workplan: one goal is to map underwater noise from ships in the Arctic
- But the Arctic is large, and detailed modeling of the entire Arctic would be time consuming
- PAME could focus modeling efforts on a subset of the Arctic, perhaps the areas with the most vessel traffic overlapping with marine mammals

Project Goal

• This project used the ASTD to examine ship traffic throughout the Arctic in September, and look at ship traffic in different marine mammal populations.

Spatial Extent

Focused on 60°N, excluding the Baltic Sea and a couple of sites in the Bering Sea and Sea of Ohkotsk

September Marine Mammal Areas

Marine mammal data from Hauser et al. (2018) PNAS

- Estimated the September range for each population of Arctic marine mammals.
- We focused on 3 cetacean species (beluga, narwhal, bowhead) and 3 pinniped species (ringed seals, bearded seals, walrus), for a total of 51 populations

September Vessel Traffic Trends, 2016-2018

September Vessel Traffic Trends, 2016-2018

Sea	2016	2017	2018	2016-2018 Average
Norwegian Sea	260	282	260	267
Bering Sea	110	133	129	124
North Atlantic	101	92	95	96
Barents Sea	49	47	44	47
Baffin Bay-Davis Strait	30	34	38	34
Chukchi Sea	29	21	17	22
Greenland Sea	23	21	19	21
Kara Sea	24	18	17	20
East Siberian Sea	15	14	12	14
Hudson Bay-Foxe Basin	13	13	14	13
Laptev Sea	14	13	11	13
Beaufort Sea	7	4	3	5
Canadian Arctic Archipelago	5	4	4	4
Arctic Ocean	1	0	0	0

Area-corrected total distance traveled within each Arctic sea.

2018 July to October Vessel Traffic Trends

2018 July to October Vessel Traffic Trends

Sea	July	August	September	October
Norwegian Sea	262.8	257.2	259.9	197.4
Bering Sea	159.3	144.2	128.9	97.4
North Atlantic	146.2	140.7	95.2	82.4
Barents Sea	44.1	44.8	44	39
Baffin Bay-Davis Strait	26	42.4	37.6	21.9
Greenland Sea	14.6	24.4	16.8	8.3
Kara Sea	22.7	23.6	19.5	15.3
Chukchi Sea	11.6	17.2	17.4	13
Hudson Bay-Foxe Basin	16	11.3	14.2	15.9
East Siberian Sea	2.2	11	12.4	7.2
Laptev Sea	1.7	8.8	10.8	5.7
Canadian Arctic Archipelago	0.2	2.6	3.1	0.1
Beaufort Sea	0	2.2	3.6	0.4
Arctic Ocean	0.1	0.2	0.1	0

Area-corrected total distance traveled within each Arctic sea.

Vessel Traffic in Marine Mammal Areas

	Ce	taceans	Pinnipeds		
Rank	Marine Mammal Area	Value	Marine Mammal Area	Value	
1	Beluga – White Sea	241	Walrus – Novaya-Semlya-Barents Seas	54	
2	Beluga – Gulf of Anadyr	122	Ringed Seal – Bering Sea	44	
3	Beluga – Siberian Sea	85	Bearded Seal – Barents-White-Kara-Laptev Seas	41	
4	Narwhal – Eclipse Sound	59	Walrus – SE. Baffin Island	37	
5	Beluga - Svalbard	37	Walrus – Bering-Chukchi Seas	35	
6	Beluga – Bering Sea	33	Ringed Seal – White-Barents-Kara-Siberia Seas	30	
7	Bowhead – E. Canada-W. Greenland	24	Bearded Seal – Svalbard	26	
8	Narwhal – Admiralty Inlet	24	Walrus – N. Hudson Bay	25	
9	Narwhal – Somerset Island	20	Ringed Seal – Baffin Bay	25	

Top ten areas for cetaceans and pinnipeds with the most area-corrected vessel traffic. Top three cetacean areas have much more traffic than all other areas, although 4th cetacean area is also quite high.

NOTE: our list of marine mammal areas with most traffic differs greatly from Hauser et al.'s analysis – important methodological difference.

Vessel Traffic in Top 3 Marine Mammal Areas

In these top three areas, individual 10 x 10 km cells aren't all that high, but looking at the whole marine mammal area, large amounts of each area are covered by vessel traffic.

Fishing vessels and bulk carriers were the largest contributor to vessel traffic in all of these areas, as well as for most of the other areas.

Next Steps for PAME

- Decide how to focus the underwater noise mapping (pan-Arctic vs focused on smaller areas)
- I have two suggestions, based on this analysis:
 - Focus on the marine mammal areas with the highest vessel traffic. The top 10 for cetaceans and pinnipeds are listed separately in the report.
 - Focus on the seas with the highest vessel traffic that also overlap with multiple marine mammal areas. My suggestions are Bering Sea, Barents Sea, and Baffin Bay-Davis Strait.
- Of the two options, I prefer focusing on the seas rather than the marine mammal areas. After modeling is done, then overlay the marine mammal areas to examine ship noise in multiple marine mammal areas in each of the three seas.

Acknowledgements

- Transport Canada for funding
- Drummond Fraser and Andrew Dumbrille for guidance on this analysis.
- Nicole Le Baron for assistance with analyses.
- Francis Juanes and Rosaline Canessa (U Vic) for lab space and computer access.