Modelling Arctic oceanographic connectivity to further develop PAME's MPA toolbox – *Progress report*

Per Jonsson and Göran Broström University of Gothenburg Sweden

Protection of the Arctic Marine Environment (PAME) Oslo February 4, 2020

Dispersal & Connectivity

PAME MPA-network tool

How can *connectivity* information aid in design & management of MPAs?

- Self-recruitment within an MPA
- Import/export from other areas
- Design criterion for MPA networks

How to estimate connectivity?

Direct measurements

How to estimate connectivity?

Indirect measurements

Modelling oceanographic connectivity

Circulation model

www.aoml.noaa.gov

Biophysical model

Circulation model

Spawning timeLarval durationVertical behavior

Depth position

The Connectivity Matrix

The probability to disperse: from area

	1	2	3	4	5
1	40	0	0	0	0
2	0	0	52	0	10
3	9	27	0	22	0
4	0	17	0	0	20
5	45	47	42	63	0

to area

Limitations with biophysical modelling

- Only relevant for species with free-drifting larvae (ca 70% of all marine species)
- Circulation models only approximate water transport
- Knowledge of larval behaviour often poor
- Estimating only potential connectivity, especially if habitat is not well mapped

Why choosing this approach?

- High coverage in space & time
- Can cover a broad range of species
- Inexpensive if circulation model is available
- Results can suggest areas for more detailed investigations, *e.g.* genetic studies

Progress of project

Modelling Arctic oceanographic connectivity to further develop PAME's MPA toolbox

Start: January 2019 End: July 2020

Selection of circulation model

- TOPAZ 4 (official model in Copernicus)
- ROMS ARCTIC 4

Review of dispersal traits

- Spawning season?
- Larval duration?
- Vertical behaviour?

	A	В	с	D	E	F	G	H	- I	J	к	Larra	M	N	
1				Larval type	Depth of occ	Depth distri	oution (m)				Spawning	Spawning	Larval	tarval	Ľ
2						%					season from	a season to	season from	season to	P
Е	Phylum/Clas	Order/Famil	Species/Stag	Pelagic/Berr	thic	0-20	20-50	50-100	100-200	>200	(month)		(month)	(month)	(r
4	Pisces	Gadiformes	Boreogadus :	P	surface	100	(1	1 7	2 2	4	
5	Pisces	Gadiformes	Eleginus grav	p	surface	100	1 1 1 1 1 1 1 1				1	1 7	2 2	4	I
6	Bivalvia	Adepodonta	Hiatella orcti	P	0-65		· · · · · · · ·		1				5	10	
7	Bivalvia	Myida	Mys truncate	P	0-65	/							5	10	
8	Bivalvia	Cardiida	Serripes gros	P	0-65		1		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6	7	
9	Annelida	Polychaeta	Ampharete a	8	0-65	/								1	
10	Annelida	Polychaeta	Αποcomo pri	P	6-200		1. 1. 1. I						4	б	ľ
11	Annelida	Polychaeta	Chone duner.	P	6-200		1						6	10	ľ
12	Annelida	Polychaeta	Eteone barbo	P	6-200		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and the state of the		3	5	1
13	Annelida	Polychaeta	Gattyana cf.	P	6-200		1						5	B	ļ
denk Sy	seDirect			*									6 6 3	8 8 5 8	
				MARINE								1	2	5	Л

	Contents lists available at ScienceDirect						
	Journal o	of Marine Systems					
ER	Vol. 356: 189-202, 2008 doi: 10.3354/mers07271	MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser					

journal of Marine Sys

doi: 10.3354/meps07271

Seasonal dy

Helena Kling M

ARTICLE II

Article hstory: Received 22 March 2016 Received in revised form 2 Acceptel 7 December 201 Available online 9 Decemb Reproductive strategies of benthic invertebrates in the Kara Sea (Russian Arctic): adaptation of reproduction modes to cold water

Ingo Fetzer^{1,*}, Wolf E. Arntz²

¹Helmholtz Center for Environmental Research (UFZ), Dept. Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany

²Alfred-Wegener-Institute for Polar and Marine Research, Columbusstrasse, 27568 Bremerhaven, Germany

ABSTRACT: Many benthic invertebrates in the boreo-Atlantic region reproduce via pelagic larvae. Past investigations in polar areas suggested a greater predominance of species lacking a pelagic

Poorly known!!

Published March 18

Input from, *e.g.* CAFF and WWF

8

ß

B

5

5

Setting up particle tracking model

Particle sources covering the entire area with a depth above 500 m 40893 release points

Production of particle trajectories

Production of particle trajectories

- Particle release every day and summarised every month
- Larval positions after 5, 10, 20, 30, 50, 70,100 days
- Larval drift depth: 0, 5, 10, 15, 20, 30, 50, 100, 150, 200 & 300 m
- Repeated for 10 (25) years
- Model simulations performed on a computer cluster

The connectivity matrix

 Calculating connectivity matrices (trait and habitat dependent)

One connectivity matrix

40893 sites

A database of connectivity matrices

- Every month
- Larval positions after 5, 10, 20, 30, 50, 70,100 days
- Larval drift depth: 0, 5, 10, 15, 20, 30, 50, 100, 150, 200 & 300 m
- Averaged over all years

12 x 7 x 11 = 924 matrices

Examples of results

Heat-maps of dispersal probability from 7 release points

Maps of dispersal distance and direction

Mapping dispersal barriers

Nilsson Jacobi et al. (2012)

How can connectivity contribute to MPA design?

Area of influence after 10 days of transport

Self recruitment in MPAs

Identification of optimal MPA networks

Optimal extension of MPA networks

Remaining tasks

- Quality control of dispersal simulations
- Continue to summarise dispersal simulations into connectivity matrices
- Initial analysis of connectivity patterns and identification of barriers
- Technical report (July 2020)
- Scientific report

Discussions with Marine Protected Areas Expert Group

- A general interest to include connectivity in the MPA toolbox
- A test case as demonstration would be useful

- Limited availability of habitat maps is a bottleneck
- This approach is not suitable for most migratory species, e.g. some fish & marine mammals

Thank you!