PLACEHOLDER FOR A NEW POTENTIAL FUEL PROJECT IN THE ARCTIC

ENVIRONMENTAL TOXICITY AND FAITH OF LIGHT- AND INTERMEDIATE FUEL OILS WHEN SPILT ON A COLD WATER SURFACE

Norwegian Coastal Administration Jon-Arve Røyset

1

Changes in fuel Sulphur content regulation

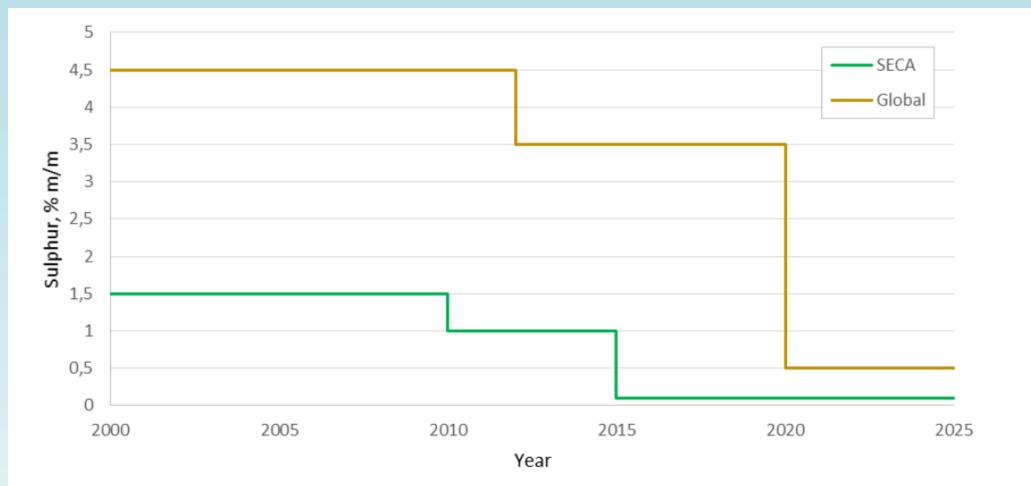


Figure 1-1: Previous and future changes in regulations regarding sulphur content in marine fuel oils within SECA and globally

RELEVANT BUNKER OPTIONS IN 2020

0.5% Sulfur fuel Globally and 0.1% Sulfur fuel in ECA's

- Continue to use Heavy Fuel with Scrubbers for Exhaust
- Use MGO (Marine Diesel)
- Use Hybrid Fuels (like Exxon HDME50, Shell ULSFO)
- Use LNG (for the ships with new dual engine and space)
- Desulfurize Heavy fuels at liquid fuel level

Background for the suggested project

- Basis for this proposal is a project funded by the Norwegian Coastal Administration (NCA, 2016-2017) that studied 3 hybrid/LSFO-fuels and 5 marine diesel oils
- The three hybrid oils had a wide span in properties, and two of them had highly solidifying properties in cold water
 - reduced the effectiveness of dispersants
 - Reduced effectiveness, or more accurately oil skimmers failed to work
 - <u>http://www.kystverket.no/Beredskap/forskning-og-utvikling/diesel--og-hybridoljer/forskningsresultater/</u>
- A Wide span in toxicity / chemical composition were also reviled in the study
 - Some fuels are highly toxic
 - Others are acceptable or even "clean"

Hybrid fuel oil samples

Hybrid fuel Shell ULFSO when spilt on a cold sea surface

Weathering in meso-scale flume basins

Example ULFSO at 2°C, (pour-point = +24°C)

Just after release (0 hr) → immediately solidified lumps (5000 mPas)

After 72 hours: Stable emulsion (75 -80 % water) (25000 mPas)

After 72 hours weathering, and just after dispersant treatment:

- Low effectiveness: < 20 % disp.
- Surface: 25000 → 14000 m Pas

Bilde 3 viser at Shell ULSFO ikke flyter sammen og tetter hullene med vann

Weathering in meso-scale flume basins

Example HDME 50, at 2°C, (Pour-point = +12°C)

Low spreading properties → solidified lumps (50000mPas)

After 4 hours: Emulsification on the solidified lumps (20000 / 50000mPas)

After 72 hours weathering, and just after dispersant treatment:

- 50% of the emulsion dispersed
- Solidified lumps: not dispersible

Differences in environmental toxicity

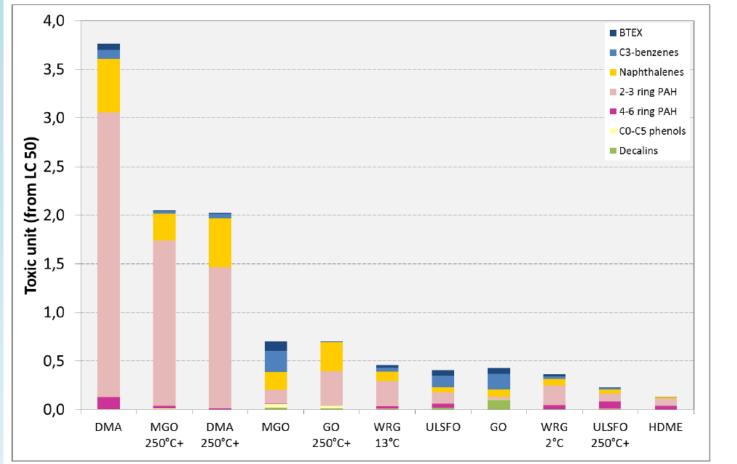


Figure 7-8: Toxic Unit calculated for WAFs of 1:40 loading for the tested oils and weathered residues. TU > 1 indicate that 50 % of the test organisms dies. DMA = Rotterdam diesel

Norway want to solder the interest for a joint project between EPPR and PAME

Environmental toxicity of light- and intermediate fuel oils (PAME)

- Fuel samples from different batches of the same product may vary considerable in relation to toxicity
- Equivalent products (substitutes/competitors) vary greatly in relation to toxicity levels?
- Why is it so?
 - Is it the crude oil used in the refinery as an input that is decisive for the toxicity level?
 - Or the refinery technology or processes?
 - Or is the toxic substances added for other reasons by the refinery, or by the oil blenders?

The fate of hybrid- and intermediate fuel oil when spilled at a cold sea surface (EPPR)

- Fuel oil from the same viscosity and ISO class behave so differently when spilt on a cold sea surface
- Some Hybrid oils become very stiff and greasy and they may be difficult to remove mechanically with skimmers or other oil uptake methodologies
- While other hybrid oils on the other hand, will be in a liquid form even at a cold sea surface and hence much easier to remove.

Project goals

Environmental toxicity

- Gather knowledge and describe facts accurately about the reasons for the large variation in environmental toxicity
- What measures can be taken to avoid high toxicity levels in oils in arctic waters and in other sea areas?
- Industry involvement will be required for this task.

The fate of hybrid- and intermediate fuel oil when spilled at a cold sea surface

- Describe why fuel oil from the same viscosity and ISO class behave so differently when spilt on a cold sea surface
- What measures can be taken to optimize intermediate and hybrid fuel oil to have the best possible oil uptake properties when spilt in cold water and in ice

"The most effective blender is one who meets the fuel specification limit while using the lowest cost blend stock"

- Quote from a Senior Blending expert

Thank You!

Een.

Cieffin .

5