

Integrated Ecosystem Assessment Program: *EA in Action*

Elizabeth Logerwell

Second International Science and Policy Conference on

Implementation of the Ecosystem Approach to Management in the Arctic

Bergen, Norway

June 27, 2019

IEAs provide ecosystem science to meet the needs of managers and stakeholders

Guiding framework to implement ecosystembased management while each step produces valuable science and builds strong partnerships

The Steps of the IEA Approach

NOAA Integrated Ecosystem Assessment

- Clearly define goals and the system of interest.
- 2. Identify, select and (when needed) develop indicators that capture the status and trends of key ecosystem components defined in the first step of the approach.
- 3. Assess the ecosystem, which often results in Ecosystem Status Reports.
- 4. Conduct a risk assessment.
- 5. Evaluate management strategies.

NOAA FISHERIES

Pilot study focused on risk to target species from nine California fisheries

We also assessed risk to bycatch and habitats

birds

mun wit

Other

rockfish

Marine

mammals

Flatfish

endangered species, and/or overfished rockfish

Pelagic finfish

Non-pelagic finfish

Elasmobranchs

Salmonids

Marine invertebrates

Β

HABITAT GROUPS

marine

vegetation

Offshore hard

bottom

(>200m)

marine

invertebrates

Offshore soft

bottom

(>200m)

Pelagic

Nearshore hard bottom (0-200m)

Nearshore

Hard bottom

intertidal

Co-development of the risk tool

- Project team consisted of California state scientists and managers, and NOAA Fisheries scientists
- Convened 2 workshops with fishermen, scientists, eNGOS to solicit feedback and recommendations

Screening tool to identify potential concerns

Fishery Key

- CGN commercial, gill net
- CHL commercial, hook & line
- CTP commercial, trap
- CTR commercial, trawl

SH - sport, hoop net

SHL - sport, hook & line

Gulf of Mexico IEA: coping with episodic mortality events Are current harvest policies robust to possible future changes in frequency of "red tide" harmful algal blooms?

Slide courtesy of Mandy Karnauskas (NOAA Fisheries)

2018 Bering Sea Walleye Pollock

- Lack of sea ice
- Low food abundance & quality
- Pollock biomass decreased
- Poor seabird reproduction and dieoffs
- Fur seal pup production down at St. Paul; up at St. George
- Decrease in Red + Blue King Crab and Tanner Crab; increase in Snow
 Crab.

Warm conditions lead to reduced productivity and insufficient food resources

Example Risk Table 2018 EBS pollock

Assessment-related	Population dynamics	Environmental/ecosystem
considerations	considerations	considerations
Retrospective analysis indicates	Near term recruitment	Unprecedented warm conditions
no consistent biases in the	likely to be below average.	in 2018 resulted in reduced
assessment. The model tracks	Spawning	production. Weak, delayed
the available data well including	population has low	phytoplankton bloom, reduced
multiple abundance indices. Of	diversity of ages and the	biomass. Zooplankton prey base
minor concern (presently) is the	mean age of the spawning	reduced. Unprecedented seabird
fact that the model estimate of	stock (weighted by	die-off event and broad
declining abundance is	spawning output) at	reproductive failures indicate
somewhat less than that	relatively low levels.	insufficient prey resources
suggested by the survey data.		
Conclusion: Level 1. No	Conclusion: Level 2.	Conclusion: Level 2.
increased concerns	substantially increased	substantially increased
	concerns	concerns

Overall score is Level 2: Substantially increased concerns. Author's recommended ABC = 70% of maximum permissible (30% reduction)

Slide courtesy of Elizabeth Siddon (NOAA Fisheries)

1000 Integrated Ecosystem Assessment Integrated

https://www.integratedecosystemassessment.noaa.gov/