Systematic conservation planning for ecosystem based approach to management: case study from Pechora Sea

Boris Solovyev^{1,2}, Vasily Spiridonov³

¹A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, ²WWF Russia,

³ P.P. Shirshov Institute of Oceanology of Russian Academy of Sciences

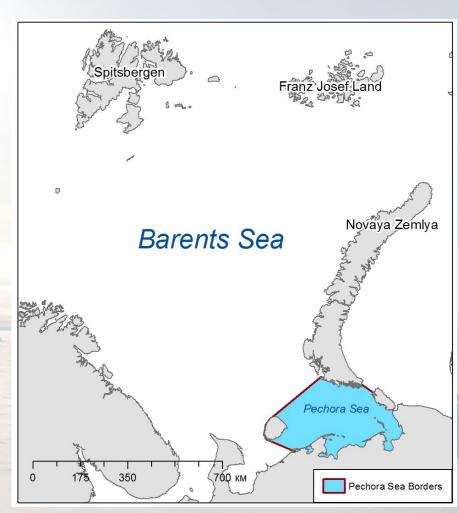
PAME Second EA International Conference Bergen, Norway 25-27.06.2019

MPAs and EBM

- Create new MPAs and expand existing MPAs
- Develop other areabased Conservation Measures
- 3. Advance from identification of Conservation Priority Areas to Ecosystem Approach to Management

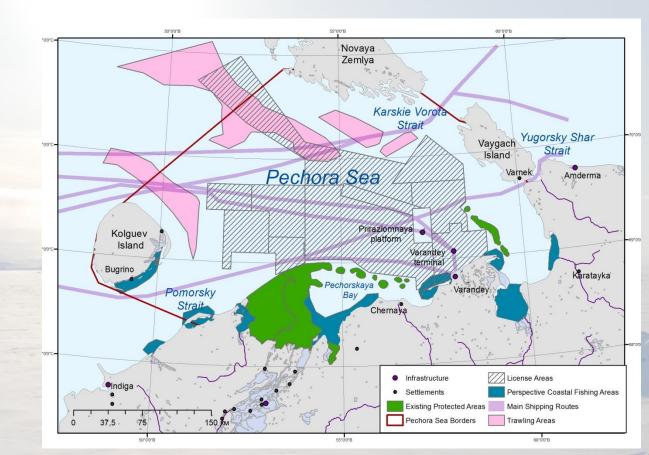
MPA Networks as Part of an Ecosystem Approach to Management

Figure 3. Relationship between MPAs, "other areabased conservation measures," wider seascape and an ecosystem approach to management.


*Page 13, Framework for a Pan-Arctic Network of Marine Protected Areas, PAME, April 2015

The goal of the project

Develop a spatially explicit biodiversity basis for ecosystem based management and marine spatial planning in the Pechora Sea


- To identify areas of highest importance for biodiversity
- 2. To identify vulnerability of the biodiversity to the specific threats and integral vulnerability
- To inform future marine spatial planning and ecosystem based management
- 4. To develop and test the methodology

Why was Pechora Sea chosen for the analysis?

- Relatively compact and well-studied area
- Area of high biological importance as identified by many analyses (EBSA, AMAP etc)
- 3. Area of high economic importance

Identify conservation goals for the planning region

Criteria for selection of conservation features:

U	Inic	luen	ess	or	rari	itv
				•		,

Special importance for life history stages of species

Importance for the threatened, endangered or declining species and/or habitats

Vulnerability, fragility, sensitivity, or slow recovery

High biological productivity

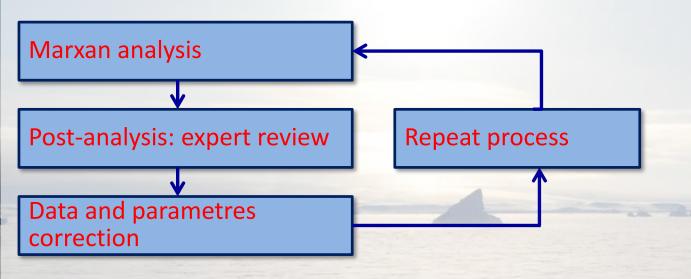
High biological diversity

Representativity of biotopes

Genetic diversity (representativity of geographical forms, populations, subpopulations etc.)

Maintenance of functions/structures of ecosystems

Species and areas of special importance for indigenous peoples / communities



Data collection

	Number of biotopes and communities	Number of species	Total number of Conservation Features
Marine mammals	-	4	8
Seabirds and waterfawl	5	9	19
Fishes	4	8	17
Pelagic features	7	-	8
Benthos	12	-	12
Seascapes	-	-	6

Analysis

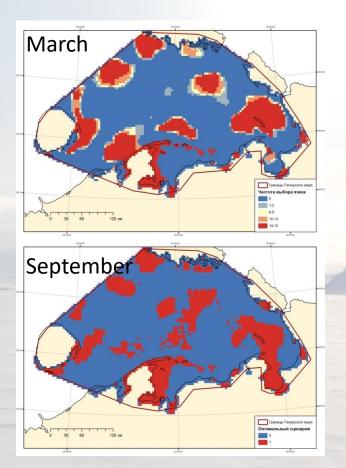
- Transparent
- Open
- Iterative

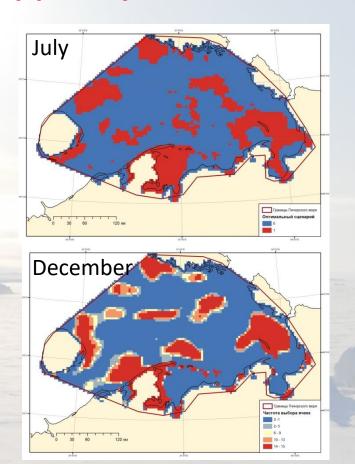
+

Show 20 ▼ entries

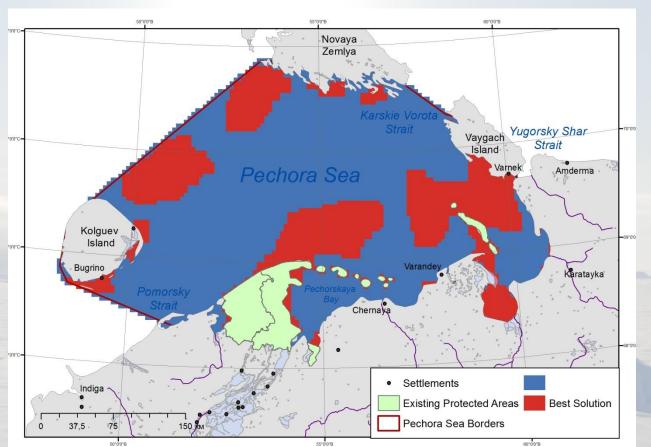
Search:

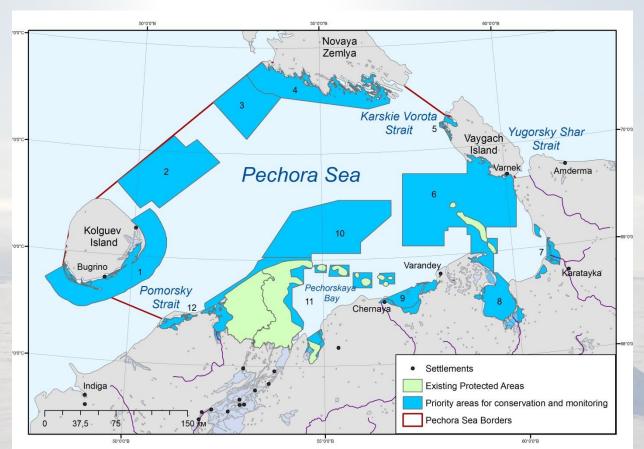
CF 	Name	\$ Representation of selection ▼	Target 🏺	Target achievement for Pan-Arctic area	Target achievement for \$ selection	Proportion of target achievement in selection
7245	Pechora Sea kelp patches (13-14)	0.5000	1.0000	100.00%	50.00%	0.5000
6020	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	0.3106	0.4960	115.87%	31.95%	0.2757
8025	intertidal zone of the Barents Sea LME	0.1332	0.3200	171.49%	14,56%	0.0849
3012	Fast ice distribution in the Pechora Sea	0.0859	0.0800	832.48%	57.57%	0.0692
7076	I.1.3.4. Estuaries and lagoons	0.0314	0.7983	104.04%	0.34%	0.0033
7049	Pechora Sea - Baidara Bay transitional zone	0.0248	0.2660	267.03 <mark>%</mark>	4.75%	0.0178
6061	Common eider (Somateria mollissima mollissima) SE Barents and Kara Sea breeding&moulting grounds	0.0222	0.3840	158.22%	2.95%	0.0187
4020	Feeding area of the White-sea vendace (Coregonus sardinella marisalbi) (F21)	0.0189	0.4000	203.41%	2.41%	0.0119
7064	I.1.1.1. Coastal domain in the Barents Sea	0.0149	0.1827	342.08%	4.32%	0.0126


Lealiet | @ Openaticetiviap continuutors, CO-DT-SA

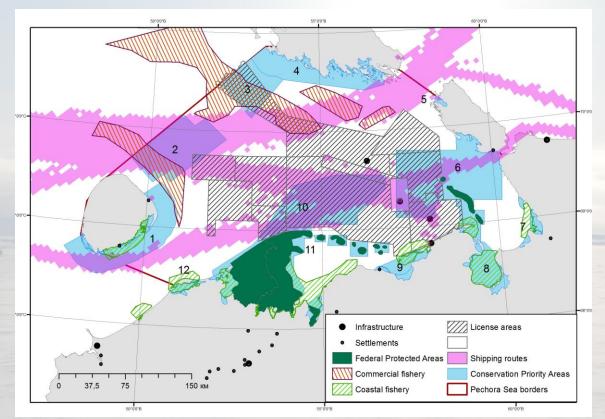

https://so km

01 -- sc


Seasonal scenarios to identify priority areas for conservation



Marxan outputs: final scenario



Priority areas for conservation in the Pechora Sea

Priority areas for conservation in the Pechora Sea and economic activities cannot be significantly separated

Vulnerability analysis

From sources (economic activities)

From conservation features (vulnerabilities)

For threat detection and management

To identify critical habitats and seasons

Spatial planning

Kolguev

Bugrino

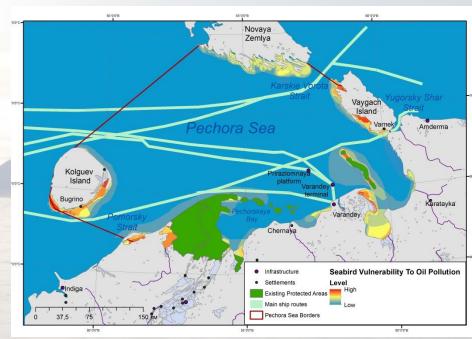
Vulnerability to particular threats

Seabird vulnerability to coastal

fishing bycatch Novaya

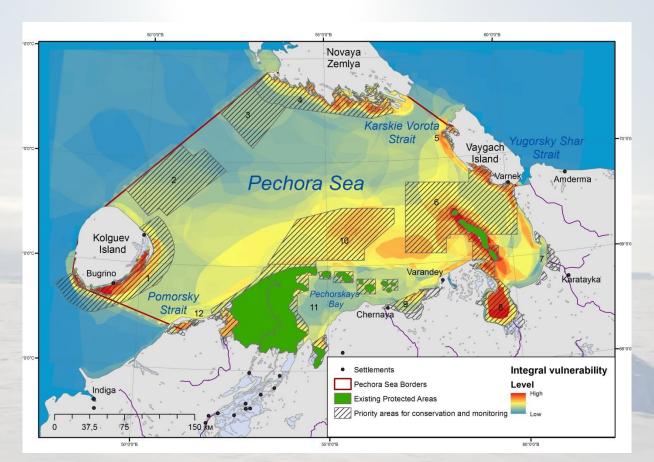
Existing Protected Areas

55°0'0"B


Vaygach Island

Seabird Vulnerability To Coastal Fishing Bycatch

Amderma


Karatayka

Seabird vulnerability to oil pollution

Integral vulnerability and PACs

Conclusions:

- 1. The systematic conservation planning approach we used and continue to develop provides us with transparent, replicable and adaptable process for defining the spatially explicit biodiversity basis for marine spatial planning
- 2. Pechora Sea is an excellent candidate region for pilot marine spatial planning and integrative ecosystem-based management plan
- 3. When significant separation of conservation priority areas and economic activity hotspots is not possible, specific sets of management measures should be defined for particular conservation priority areas and zones of conflicts
- 4. Systematic vulnerability assessment is needed both for ecosystem based management and for an industry regulations. Systematic vulnerability assessment helps to choose conservation measures adequately.

Thank you for your attention!

Integration of systematic conservation planning in Marine Spatial Planning in the Pechora Sea Project:

B. Solovyev, V. Spiridonov, I. Onufrenya, N. Chernova, M. Gavrilo, A. Gebruk, D. Glazov, P. Glazov, N. Platonov, M. Solovyeva, N. Shabalin, V. Ivshin, A. Amiragyan

Contact info: bsolovyev@wwf.ru