

Fuel oil use in the Arctic in 2016

Jon-Arve Røyset, Senior Advisor Quebec, 12.02-2017

www.astd.is

The main goals:

- Provide reliable data for different analyses performed under the realm of the Arctic council and its working groups, including EPPR and AMAP
- Promote Arctic research and development by offering high quality data
- Three access levels, contributing Arctic council member government have full access. To complicated to go into the details, but separate a document regulate access and payment

https://www.youtube.com/watch?v=MLOwVcr4Jr0

Content of the demo – to analyze fuel use in the Arctic by using ASTD

- Numbers and percentages of vessels using different grades of fuel in the Polar Code area in 2016
- Fuel consumption of different grades of fuel oil
- Sailed distance with different grade of fuel oil
- Ship routes for each fuel type
- Comparisons to a high traffic Area (The North Sea area)
- Analyze change

Vi tar ansvar for sjøvegen

Methodology

- The calculations are done at the individual ship level
- Correct engine and KW and speed over ground is used in the calculations
- Correct fuel type is used, but where fuel type was unknown, it was filled in by looking at a sister ship or similar ships (RPM engine)
- Unique ships is aggregated to 13 ship types

Every dot counts

Vi tar ansvar for sjøvegen

Ship emission logarithm

$$E_{i,j} = \sum_{t=0}^{t=n} \left(\left(P_{ME_i} * \left(\frac{SOG_{i,t}}{V_{max_i}} \right)^3 * EF_{ME_{j,k,l,m}} + D_{AE_{p,i}} * EF_{AE_{j,k,l,m}} + D_{BO_{p,i}} * EF_{BO_{j,m}} \right) * 1 \text{ hour} \right)$$

```
Where:
 i = ship
 j = pollutant
 t = time (operating hour, h)
 k = engine type
 / = engine tier
 m = \text{fuel type}
 p = phase
 E_{ij} = emissions (g) for ship i and pollutant j
 P_{ME} = main engine power (kW) for ship i
 SOG_{i,t} = speed over ground (knots) for ship i at time t
 V_{MAX} = maximum speed (knots) for ship i
           = main engine emission facor (g/kWh) for pollutant j, engine type k, engine
             tier I, and fuel type m
 D_{AE_{p,t}} = auxiliary engine power demand (kW) in phase p for ship i
          = auxiliary engine emission factor (g/kWh) for pollutant j, engine type k,
            engine tier I, and fuel type m
 D_{BO_{p,i}} = boiler power demand (kW) in phase p for ship i
 EF_{BO_{j,m}} = boiler emission factor (g/kWh) for pollutant j and fuel type m
```

Vi tar ansvar for sjøvegen

KYSTVERKET

Total fuel consumption (independent of fuel type) in metric tons and sailed distance in nautical miles in 2016 per ship type

	Sum fuel consumption in metric tons	
Ship type		Sum sailed distance in nautical miles
Fishing vessel	126708	4181120
General cargo vessel	90337	1203282
Other vessels	68863	1535955
Oil tanker	65819	610974
Passenger vessel, including cruise	40346	602930
Chemical tanker and product tanker	30407	385686
Dry bulk vessel	29031	284491
Container vessel	16466	176128
Offshore supply vessel	14747	155564
Refrigerated cargo vessel	12804	159482
Ro Ro cargo vessel	6192	52371
Other offshore service vessel	1881	19403
Total	503601	9367386

Number and percentage of vessels using different grades of fuel in the Polar Code area in 2016

- Distillate marine fuel (MGO/MDO)
- Residual marine fuel (ISO-F-80 180) Heavy fuel oil
- Liquide gas propelled (LNG) and nuclear powered ships
- Residual marine fuel and heavy distillate (ISO-F-10 80)
- Residual marine fuel (ISO-F-180 380 or above) Heavy fuel oil

Consumption of different grades of marine fuel in metric tons in the Polar Code area in 2016 and in the North Sea in 2014 (7)

[■] Fuel consumption in metric tons inside the bounderie of the Polar code

Consumed ISO-F 180-380 broken down by vessel types in the Polar Code area in 2016

2014 and 2017 dry bulk shipping from Baffinland's Marry river mine

Shipping in The Arctic and resent Changs – Shuttle tankers

Year-round shipments of Yamal oil from the Arctic Gate (Vorota Arktiki), an Arctic oil loading terminal, (Yamal Peninsula, Yamal-Nenets Autonomous Area).

Fuel consumption (ton) in the Arctic

KYSTVERKET

Vi tar ansvar for sjøvegen

The end Ono or two questions? Thank you!